Инжекторная система впрыска

Multi-Point fuel injection

Многоточечный впрыск стал значительным шагом вперед, по сравнению с одноточечным впрыском, поскольку позволил автомобилям вкладываться в нормы токсичности ЕВРО-3.

История эволюции систем впрыска автомобилей крайне интересна, но не она является главной темой этой статьи

Именно поэтому уделять внимание тонкостям работы таких систем управления двигателем с распределенным впрыском, как D-Jetronic, KE-Jetronic, K-Jetronic и L-Jetronic мы не будем. Устанавливать на авто перечисленные вариации перестали еще в начале 90-х, а поэтому встретить автомобиль с «живой» системой распределительного впрыска такого типа крайне сложно

Главное отличие полноценного инжектора от моновпрыска – наличие 4-х форсунок, расположенных вблизи впускных клапанов. Компоненты инжекторного двигателя:

  1. – топливный насос, который в подавляющем большинстве случаев расположен в баке;
  2. – фильтр грубой очистки топлива;
  3. – регулятор давления топлива, от которого к баку идет магистраль обратки для слива лишнего топлива. В некоторых авто обратная магистраль отсутствует как таковая, а регулятор топлива находится рядом с насосом в баке;
  4. – форсунка. На рисунке сверху показано, как все форсунки соединены топливной рампой;
  5. – расходомер воздуха;
  6. – датчик температуры охлаждающей жидкости;
  7. – регулятор холостого хода (РХХ);
  8. – потенциометр, фиксирующий фактическое положение дроссельной заслонки (ДПДЗ);
  9. – датчик частоты вращения коленчатого вала (ДПКВ);
  10. – кислородный датчик;
  11. – ЭБУ;
  12. – распределитель зажигания.

Расчет массы воздуха

Помимо форсунок, особенностью системы является способ расчета массы воздуха. Существует всего 5 способов измерения количества воздуха, проходящего через дроссельную заслонку:

    • обороты/нагрузка. Применяется на одноточечной системе впрыска и в качестве резервного варианта для распределительного впрыска, если расходомер воздуха выходит из строя;
  1. расходомер флюгерного типа. Применялся на системах управления двигателем Jetronic;
  2. ДМРВ – датчик массового расхода воздуха. Принцип работы основывает на поддержании электрическим током постоянной температуры нагревательного элемента. Проходящий через ДМРВ воздух охлаждает элемент, что требует увеличения тока. При помощи преобразователя величина тока нагрева элемента преобразовывается в выходное напряжение. Между напряжением и массой поступившего воздуха существует зависимость, которая и позволяет ЭБУ рассчитать количество необходимого для подачи топлива;
  3. MAP-сенсор – датчик давления во впускном коллекторе. ЭБУ, имея информацию о величине абсолютного давления во впускном коллекторе и дополнительно используя показания датчика температуры воздуха, рассчитывает цикловую подачу топлива;
  4. датчик объема воздуха. Измеряется именно объем, который впоследствии пересчитывается в массу; на данный момент такой способ расчета воздуха не используется.

Характеристика

Преимущества распределительного впрыска на клапаны:

  • равномерное наполнение цилиндров;
  • использование ДМРВ или MAP-сенсора позволяет точно рассчитывать расход воздуха, что дает больше возможностей для регулировки ТПВС на всех режимах работы мотора.

Именно поэтому автомобили с полноценным инжектором всегда мощнее и экономичнее авто с одноточечным впрыском.

Принцип работы инжектора и его конструкция

Думаю что будет лучше всего, если мы рассмотрим принцип работы инжектора на распределенной системе впрыска, так как именно она установлена на большинстве автомобилей и считается одной из самых удачных и распространенных.

Для удобства предлагаю разделить систему подачи топлива на две основные составляющие – электронную и механическую. Роль механической системы достаточно простая – обеспечение непрерывной и дозированной подачи топлива в цилиндры. А вот управление и контроль системы производится электроникой.

Механическая часть

Механическая составляющая инжекторной системы включает в себя следующие компоненты:

  • бензонасос (электрический);
  • топливный бак;
  • фильтр очистки бензина;
  • топливную рампу;
  • топливопроводы высокого давления;
  • форсунки;
  • дроссельный узел;
  • воздушный фильтр.

Этот список составляющих не исчерпывающий. В зависимости от конструктивных особенностей двигателя и системы управления в механическую часть могут включатся и другие элементы. Приведенный выше список является списком обязательных элементов для любого двигателя.

https://www.youtube.com/watch?v=XhSyHJkh4xg

Принцип работы

Теперь давайте рассмотрим зачем все эти составляющие нужны и какую работу выполняет каждая из них. Думаю все и так знают, что топливный бак это емкость для бензина. Электрический бензонасос, который расположен в баке, обеспечивает непрерывную подачу топлива под давлением.

После чего топливо попадает в фильтр, где очищается от примесей и прочего мусора. Топлипроводы высокого давления позволяют бензину беспрепятственно двигаться по системе подачи топлива.

Регулятор давления не позволяет достигать критической отметки давления во всей системе. Через регулятор топливо попадает в топливную рамку, которая подводит его к форсункам. Форсунки расположены во впускном коллекторе.

Несколько лет назад форсунки срабатывали под давлением топлива и их конструкция была полностью механической. Тут принцип работы достаточно прост – бензин оказывает давление на пружину форсунки и открывает её, а уже через неё и впрыскивается в цилиндры.

Сейчас на большинстве автомобилей устанавливают электромагнитные форсунки. Основной составляющей, которой являются обычный якорь и обмотка. Канал подачи топлива открывается благодаря получению сигнала от электронной системы управления.

С обратной стороны в систему принудительно подается воздух, через воздушный фильтр. Дроссельный узел с заслонкой располагается в патрубке по которому идет воздух. Когда водитель нажимает на педаль газа, он воздействует на заслонку. Но водитель осуществляет контроль только над воздухом, который подается в цилиндр, топливо регулирует электронная система управления.

Электронная часть

Блок памяти и контролер являются основными составляющими в электронной системе управления, которая в свою очередь выполняет роль основы электронной части инжекторной системы. Блок управления осуществляет контроль над системой подачи топлива благодаря целому ряду датчиков, которые входят в конструкцию инжектора.

Основные датчики, которые дают электронному блоку управления информацию о работе топливной системы являются:

  1. Лямбда-зонд. Задача этого датчика определение остатков воздуха в выхлопных газах. На основе получаемых данных блок управления регулирует подачу воздуха в топливную смесь.
  2. Датчик массового расхода воздуха. Задачей этого датчика является определение объема воздуха, который проходит через дроссельную заслонку. Обычно этот датчик устанавливается внутри корпуса воздушного фильтра.
  3. Датчик положения дроссельной заслонки. Подача сигнала о положении педали газа – вот основное предназначение данного датчика.
  4. Датчик температуры силовой установки. В зависимости от температуры мотора, о которой сообщает этот датчик, блок управления регулирует топливную смесь.
  5. Датчик положения коленчатого вала. Этот датчик ответственный за выбор цилиндра в который нужно подать топливо и время подачи искры.
  6. Датчик детонации. Располагается в блоке цилиндров и предназначен для выявления и устранения детонаций.
  7. Датчик скорости. Создает импульсы, благодаря которым рассчитывается скорость движения автомобиля. Корректируется топливная смесь, опираясь на показания от него.
  8. Датчик фаз. Он определяет угловое расположение распредвала.

Нейтрализатор/катализатор

Для сокращения выброса окисей углерода и азота, в инжектор был добавлен каталитический нейтрализатор. Он преобразует выделенные из газов углеводороды. Применяется на инжекторах лишь с обратной связью. Перед катализатором имеется датчик содержания кислорода в выхлопных газах, по-другому его называют как лямбда-зонд. Контроллер, получая информацию от датчика, вытягивает подачу топливной смеси до нормы. В нейтрализаторе есть керамические составляющие с микроканалами, где содержатся катализаторы:

  • два окислительных из платины и палладия;
  • один восстановительный из родия.

    Инжекторная топливная система

Так как простых каталитических нейтрализаторов недостаточно, то используется рециркуляция отработавших газов. Она существенно убирает образовавшиеся оксиды азота. Помимо этого, для этих целей устанавливается дополнительный NO-катализатор, так как система EGR не способна создать полное удаление NOx. Есть два типа катализаторов для понижения выбросов NOx:

  1. Селективные. Не привередливы к качеству топлива.
  2. Накопительного типа. Гораздо эффективнее, но очень чувствительны к высокосернистым горючим, что нельзя сказать о селективных. Поэтому они обширно применяются на авто для стран с малым количеством серы в топливе.

Разновидности инжектора

На сегодняшний день используется электронный распределенный непосредственный впрыск. Переходным этапом инжектирования был моновпрыск (центральный) с одной форсункой. Моновпрыск использовался очень мало, так как недостатков было больше, чем достоинств. Скоро его заменил распределенный впрыск.

Распределенный электронный впрыск топлива предполагает наличие форсунок, по одной на каждый цилиндр. Воздух в цилиндры попадает через впускной коллектор и дозируется дроссельной заслонкой.

Непосредственный впрыск напоминает дизельную топливную систему, так как форсунки вмонтированы прямо в цилиндры, от чего и происходит название.

Чем опасны сбои работы форсунок, и какие признаки вероятных проблем

Если электро форсунка льёт, то снижается КПД (коэффициент полезного действия) распыления топлива. Иными словами рассеивается форма пламени. Об этой проблеме сигнализирует чёрный или серый дым. Автомобиль неохотно заводится. Когда льют форсунки, может теряться мощность двигателя.

При льющей форсунке повышается расход топлива. Грязный фильтр может стать проблемой. Форсунка может не лить, а сбои в работе могут возникнуть из-за плохих свечей. Виной может стать топливный насос или ГРМ. Сложность пуска двигателя – это 90% нерабочих форсунок.

О проблемах во время езды может свидетельствовать рывки авто, в частности при наборе скорости. После переключения скоростей, и наборе скорости, машина может дёргаться. Разгон транспортного средства и выполнение манёвров, весьма затруднены. Если ездить с проблемами впрыска, что, кстати, не рекомендуют специалисты, может существенно уменьшиться продолжительность работы двигателя.

Дефекты необходимо безотлагательно исправлять. Страшно подумать, что может произойти на крутом подъёме или опасном спуске, если выйдет из строя форсунка.

О форсунках и принципе действия

По сути инжектор в автомобиле – это форсунка, которая служит для распыления не только жидкостей, в нашем случае топлива, но и газа. Впервые такая технология была применена еще в 1951-ом году, однако на протяжении долгого времени ее не использовали в автомобилестроении из-за сложной конструкции.

Уже в конце прошлого века инжекторы стали широко распространяться, так как эксплуатационные показатели этих систем во многом превосходили всем привычные уже карбюраторы. В итоге уже в первое десятилетие текущего года эта система практически полностью вытеснила карбюраторы с рынка. Многие современные автомобили оснащены инжектором с распыленным впрыском.

Система датчиков

На инжекторных двигателях устанавливается множество датчиков, они позволяют считывать максимальное количество информации о работе. Следующие датчики можно встретить на отечественных и импортных автомобилях:

  1. Расхода воздуха.
  2. Температуры антифриза.
  3. Положения коленчатого вала.
  4. Положения распределительного вала.
  5. Давления во впускном коллекторе.
  6. Скорости автомобиля.
  7. Уровня бензина в баке.
  8. Положения дроссельной заслонки.
  9. Концентрации кислорода в выхлопных газах.

Все эти датчики управляют исполнительными механизмами, которые участвуют в образовании смеси и корректировке угла опережения зажигания.

Принцип работы

  1. В силовом агрегате топливная смесь подготавливается вне камеры сгорания при помощи специального устройства. В результате движения поршня вниз определенное количество топлива всасывается в камеру сгорания.
  2. Далее идет основной процесс, так называемый рабочий ход. В это время происходит сжимание топлива и поджигание при помощи искры.
  3. В итоге все топливо сгорает и выделяется огромное количество тепла, которое идет на мощность инжекторного двигателя.
  4. В конце такта поршень движется вверх и открывается выпускной клапан, который и выводит отработавшие газы. Далее приоткрывается впускной клапан, и новая порция топлива поступает в цилиндр.

Данный процесс происходит в течение долгого времени, пока двигатель работает. Специалисты называют такой газообмен четырехтактным. То есть все это происходит за четыре такта:

  1. Впуск;
  2. Сжатие;
  3. Сгорание;
  4. Выпуск.

Чтобы совершить один такой цикл требуется два оборота коленвала. Чтобы потери мощности были минимальны, конструкторы придумали многоцилиндровые системы. Они позволяют выдавать огромное количество тепла и мощности.

В современном мире большую популярность получил четырехтактный инжекторный двигатель, что неудивительно. Дело в том, что он отличается не только техническими характеристиками, но и самими габаритами. В основе данной системы лежит порядок работы цилиндров.

Чем отличается инжектор от карбюратора

Принцип, по которому карбюратор подает смесь бензина с кислородом в камеры сгорания двигателя, – разница в давлении. Принудительного впрыска здесь нет, и топливоподача происходит с помощью всасывания топлива. Значит, часть мощности силового агрегата тратится на этот процесс.

Количество воздуха в топливной смеси автоматически не регулируется. Карбюратор настраивается механическим путем еще до поездки, и эта настройка универсальная. Но в этом есть некоторые недостатки. Двигатель в определенные моменты способен получать от карбюратора больше топлива, чем он может переработать. В итоге часть бензина не сгорает, а выходит вместе с выхлопными газами, что наносит вред окружающей среде и не экономит топливо.

В случае же с инжектором происходит принудительная подача топлива в камеры сгорания при помощи форсунок, а количество бензина регулируется электроникой, которая и отвечает за приготовление топливовоздушной смеси.

Выхлоп инжекторного автомобиля менее токсичен, не так вреден для окружающей среды, как карбюраторный, потому что в нем меньше несгоревшего бензина.

В этом и заключаются отличия системы питания карбюраторного двигателя от инжекторного. Теперь перейдем к вопросу «что лучше» не для экологии, а для водителя и автомобиля.

Ещё кое-что полезное для Вас:

  • Что такое объем двигателя автомобиля?
  • Устройство, виды и назначение фильтра тонкой очистки топлива
  • Датчик коленвала: признаки неисправности

 Плюсы двигателя с инжекторной топливоподачей

  1. Если допустить, что остальные устройства в двух автомобилях идентичны и различны только способы подачи топлива, то большая мощность остается у инжекторного мотора. Разница в лошадиных силах между карбюраторным и инжекторным ДВС может составлять 10%. Эти отличия достигаются за счет другого впускного коллектора, точно выставляемого в каждый момент угла опережения зажигания, и другого способа подачи топлива.
  2. Инжекторные моторы, по сравнению с карбюраторными аналогами, отличаются топливной экономичностью за счет точной дозированной подачи бензина. При таком способе 100% бензина сгорает в камерах двигателя, превращая тепловую энергию в механическую.
  3. Основная причина перехода всех мировых автопроизводителей на инжекторную систему –  экологичность. Карбюраторные выхлопы более токсичны.
  4. В морозную погоду инжекторный двигатель не нуждается в дополнительном прогреве перед запуском.
  5. Инжекторы намного надежнее карбюраторов, их выход из строя встречается реже, по сравнению с неисправностями карбюраторов.
  6. Инжекторные двигатели не имеют катушку-трамблер. Эта деталь часто выходит из строя на машинах с карбюраторной топливоподачей.

Минусы инжекторов

  1. Хоть инжектор надежен, но он выходит из строя. А для его диагностики и последующего ремонта необходимо специализированное оборудование.  Ремонт в условиях «гаража» невозможен, для этого нужен опыт и квалификация. Ремонт этого устройства на СТО, как и обслуживание с профилактикой – работа дорогостоящая.
  2. Инжектор требует только качественного топлива. Если топливо содержит некоторое количество механических примесей, то нормальная его работа затруднена. Он быстро засорится и выйдет из строя. А чистка и ремонт стоят недешево.
  3. Следующий недостаток касается двигателей, на которые вместо карбюратора установили инжектор. В результате доработки повысится количество сгораемого в двигателе топлива, что повышает его рабочую температуру. Это чревато возможным перегревом ДВС со всеми вытекающими последствиями.

Плюсы карбюраторных систем

  1. В плане обслуживания карбюраторы считаются простыми устройствами. Для их ремонта не нужно специализированное оборудование и инструмент. Все необходимое для этого найдёте в гараже.
  2. Стоимость деталей – невысока. В случае невозможности ремонта можно купить новый карбюратор. По сравнению с инжектором его стоимость низкая.
  3. Карбюратор не требует высокого качества топлива. Он нормально работает на бензине с низким октановым числом. Небольшое количество механических примесей несильно затруднит его работу. Максимум – забьются жиклеры.

Минусы карбюраторов

Недостатков у карбюраторных систем намного больше, чем достоинств, и поэтому существует тенденция на их замещение инжекторами.

  1. Автомобиль, двигатель которого оснащен карбюратором, потребляет больше бензина, чем инжекторный аналог. Причем излишнее потребление топлива не переходит в дополнительную мощность. Топливо не догорает и выбрасывается в атмосферу;
  2. Карбюратор не любит перепадов температур. Он чувствителен и к повышенной, и к пониженной температуре окружающей среды. Зимой его детали примерзают друг к другу. Это происходит из-за образования внутри него конденсата;
  3. Низкая экологичность.

Как все работает

Теперь рассмотрим принцип работы инжекторного двигателя отдельно по каждой составляющей. С электронной частью, в целом, все просто. Датчики собирают информацию о скорости вращения коленчатого вала, воздуха (поступившего в цилиндры, а также остаточной его части в отработанных газах), положения дросселя (связанного с педалью акселератора), температуры ОЖ. Эти данные датчики передают постоянно на электронный блок, благодаря чему и достигается высокая точность дозировки бензина.

Поступающую с датчиков информацию ЭБУ сравнивает с данными, внесенными в картах, и уже на основе этого сравнения и ряда расчетов осуществляет управление исполнительной частью.В электронный блок внесены так называемые карты с оптимальными параметрами работы силовой установки (к примеру, на такие условия нужно подать столько-то бензина, на другие – столько-то).

Первый инжекторный двигатель Toyota 1973 года

Чтобы было понятнее, рассмотрим более подробно алгоритм работы электронного блока, но по упрощенной схеме, поскольку в действительности при расчете используется очень большое количество данных. В целом, все это направлено на высчитывание временной длины электрического импульса, который подается на форсунки.

Поскольку схема – упрощенная, то предположим, что электронный блок ведет расчеты только по нескольким параметрам, а именно базовой временной длине импульса и двум коэффициентам – температуры ОЖ и уровне кислорода в выхлопных газах. Для получения результата ЭБУ использует формулу, в которой все имеющиеся данные перемножаются.

Для получения базовой длины импульса, микроконтроллер берет два параметра – скорость вращения коленчатого вала и нагрузку, которая может высчитываться по давлению в коллекторе.

К примеру, обороты двигателя составляют 3000, а нагрузка 4. Микроконтроллер берет эти данные и сравнивает с таблицей, внесенной в карту. В данном случае получаем базовую временную длину импульса 12 миллисекунд.

Но для расчетов нужно также учесть коэффициенты, для чего берутся показания с датчиков температуры ОЖ и лямбда-зонда. К примеру, температура составляется 100 град, а уровень кислорода в отработанных газах составляет 3. ЭБУ берет эти данные и сравнивает с еще несколькими таблицами. Предположим, что температурный коэффициент составляет 0,8, а кислородный – 1,0.

Получив все необходимые данные электронный блок проводит расчет. В нашем случае 12 множиться на 0,8 и на 1,0. В результате получаем, что импульс должен составлять 9,6 миллисекунды.

Описанный алгоритм – очень упрощенный, на деле же при расчетах может учитываться не один десяток параметров и показателей.

Поскольку данные поступают на электронный блок постоянно, то система практически мгновенно реагирует на изменение параметров работы мотора и подстраивается под них, обеспечивая оптимальное смесеобразование.

Стоит отметить, что электронный блок управляет не только подачей топлива, в его задачу входит также регулировка угла зажигания для обеспечения оптимальной работы мотора.

Теперь о механической части. Здесь все очень просто: насос, установленный в баке, закачивает в систему бензин, причем под давлением, чтобы обеспечить принудительную подачу. Давление должно быть определенным, поэтому в схему включен регулятор.

По магистралям бензин подается на рампу, которая соединяет между собой все форсунки. Подающийся от ЭБУ электрический импульс приводит к открытию форсунок, а поскольку бензин находится под давлением, то он через открывшийся канал просто впрыскивается.

Что включает в себя инжектор?

  • Бензонасос – устройство, которое под давлением качает топливо из бака;
  • Электронный блок управления – устройство, руководящее впрыском на основании данных датчиков;
  • Устройство для нагнетания определенного давления на форсунках;
  • Комплект форсунок или одна моно-форсунка;
  • Пакет датчиков.

Принцип работы инжектора и его устройство предельно просто и понятно, однако и здесь есть характерные особенности, которые все поклонники карбюраторного впрыска относят к недостаткам. Например, стоимость отдельных узлов инжектора достаточно велика, что вызывает немало осложнений на этапе ремонта системы. В целом и ремонтопригодность здесь низкая, а требования к качеству топливной смеси очень высокие.

О том, как работает инжектор в автомобиле, можно говорить достаточно долго, если вникать в работу каждого датчика и центрального контроллера. Стоит отметить, что во всех авто настройки работы системы питания кардинально отличаются, поэтому их нельзя обобщать.

Система датчиков инжекторных двигателей

Без этих компонентов работа системы впрыска топлива невозможна. Именно датчики сообщают блоку управления всю информацию, которая необходима для работы исполнительных устройств в нормальном режиме. Неисправности системы питания инжекторного двигателя по большей части вызывают именно датчики, так как они могут неверно производить замеры.

  1. Датчик расхода воздуха устанавливается после воздушного фильтра, так как в конструкции имеется дорогостоящая платиновая нить, которая при попадании мелких посторонних частиц может засоряться, отчего показания окажутся неверными. Датчик считает, какое количество воздуха проходит через него. Понятно, что взвесить воздух не представляется возможным, да и объем его измерить проблематично. Суть работы заключается в том, что внутри пластиковой трубки находится платиновая нить. Она нагревается до рабочей температуры (более 600º, именно это значение закладывается в ЭБУ). Поток воздуха охлаждает нить, блок управления фиксирует температуру и, исходя из этого, вычисляет количество воздуха.
  2. Датчик абсолютного давления необходим для более точного снятия показаний о количестве потребляемого двигателем воздуха. Состоит из 2 камер, одна из которых герметична и внутри у неё вакуум. Вторая камера соединена с впускным коллектором. В последнем при впуске разрежение. Между камерами устанавливается диафрагма с пьезоэлементом, который вырабатывает небольшое напряжение во время изменения давления. Это значение напряжения поступает на вход блока управления.
  3. Датчик положения коленвала располагается рядом со шкивом генератора. Если присмотреться, то можно увидеть, что на шкиве есть зубья, причём они расположены на одинаковом расстоянии друг от друга. Суммарное число зубьев — 60, оси соседних расположены на расстоянии 6º. Но если присмотреться ещё внимательнее, то можно увидеть, что 2-х не хватает. Этот промежуток необходим, чтобы датчик фиксировал положение коленвала максимально точно. Датчик вырабатывает напряжение, которое тем больше, чем выше частота вращения.
  4. Датчик фаз (распредвала) работает на эффекте Холла. В конструкции есть диск с вырезанным сегментом и катушка. При вращении диска вырабатывается напряжение. Но в момент, когда прорезь находится над чувствительным элементом, напряжение снижается до 0. В этот момент первый цилиндр находится в ВМТ на такте сжатия. Благодаря датчику фаз точно подаётся искра на свечу и открывается своевременно форсунка.
  5. Датчик детонации расположен на блоке ДВС между 2 и 3 цилиндрами (чётко посередине). Работает на пьезоэффекте — при наличии вибрации происходит генерирование напряжения. Чем сильнее вибрация, тем выше уровень сигнала. Блок управления при помощи датчика изменяет угол опережения зажигания.
  6. Датчик дроссельной заслонки представляет собой переменный резистор, на который подаётся напряжение 5 В. В зависимости от того, в каком положении находится заслонка, напряжение уменьшается. Иногда случаются поломки — в начальном положении показания датчика прыгают. Стирается резистивный слой, ремонт невозможен, эффективнее установить новый.
  7. Датчик температуры ОЖ, от него зависит качество воспламенения топливовоздушной смеси. С его помощью не только происходит коррекция угла опережения зажигания, но и включение электровентилятора.
  8. Лямбда-зонд расположен в системе выпуска отработанных газов. В современных системах, которые удовлетворяют последним экологическим стандартам, можно встретить 2 датчика кислорода. Лямбда-зонд отслеживает количество кислорода в выхлопных газах. У него есть внешняя часть и внутренняя. За счёт напыления из драгметалла можно оценить количество кислорода в выхлопных газах. Внешняя часть датчика «дышит» чистым воздухом. Показания передаются на блок управления и сравниваются. Эффективные замеры возможны только при достижении высоких температур (свыше 400º), поэтому часто устанавливают подогреватель, чтобы даже в момент начала работы двигателя не наблюдалось перебоев.

Что лучше: карбюратор или инжектор?

Ответ на этот вопрос будет относительным. Если покупать новый автомобиль, то выбора здесь нет – карбюраторные автомобили уже остались в истории. В автосалоне можно купить только инжекторную модель. Однако на вторичном рынке еще много транспортных средств с карбюраторным двигателем, и их количество в ближайшее время не уменьшится, так как заводы еще продолжают выпускать для них запчасти.

Определяясь с типом двигателя, стоит учесть, в каких условиях машина будет эксплуатироваться. Если основной режим – это сельская местность или небольшой город, то карбюраторная машина неплохо справится со своей задачей. В таких местностях мало качественных СТО, которые должным образом могут отремонтировать инжектор, а карбюратор можно исправить даже самому (ютуб поможет повысить уровень самообразования).

Что же касается больших городов, то инжектор позволит прилично сэкономить (по сравнению с карбюратором) в условиях тянучек и частых пробок. Однако для такого мотора потребуется определенное топливо (с большим октановым числом, чем для более простого типа двс).

На примере системы топливной системы мотоцикла в следующем видео показываются преимущества и недостатки карбюраторов и инжекторов:

Инжектор vs Карбюратор. Что Лучше? @Motorcyclist Magazine

Устройство и принцип работы инжекторной системы впрыска

Второе название систем впрыска бензиновых моторов – инжекторная. Основная ее особенность заключается в точной дозировке топлива. Достигается это путем использования в конструкции форсунок. Устройство инжекторного впрыска двигателя включает в себя две составляющие – исполнительную и управляющую.

В задачу исполнительной части входит подача бензина и его распыление. Она включает в себя не так уж и много составных элементов:

  1. Бак.
  2. Насос (электрический).
  3. Фильтрующий элемент (тонкой очистки).
  4. Топливопроводы.
  5. Рампа.
  6. Форсунки.

Но это только основные компоненты. Исполнительная составляющая может в себя включать еще ряд дополнительных узлов и деталей – регулятор давления, систему слива излишков бензина, адсорбер.

В задачу указанных элементов входит подготовка топлива и обеспечение его поступления к форсункам, которыми и осуществляется их впрыскивание.

Принцип работы исполнительной составляющей прост. При повороте ключа зажигания (на некоторых моделях – при открытии водительской двери) включается электрический насос, который качает бензин и заполняет им остальные элементы. Топливо проходит очистку и по топливопроводам поступает в рампу, которая соединяет собой форсунки. За счет насоса топливо во всей системе находится под давлением. Но его значение ниже, чем на дизелях.

Открытие форсунок осуществляется за счет электрических импульсов, подаваемых с управляющей части. Эта составляющая системы впрыска топлива состоит из блока управления и целого комплекта следящих устройств – датчиков.

Эти датчики отслеживают показатели и параметры работы – скорость вращения коленчатого вала, количества подаваемого воздуха, температуры ОЖ, положения дросселя. Показания поступают на блок управления (ЭБУ). Он эту информацию сравнивает с данными, занесенными в память, на основе чего определяется длина электрических импульсов, подаваемых на форсунки.

Электроника, используемая в управляющей части системы впрыска топлива, нужна, чтобы высчитать время, на которое должна открыться форсунка при том или ином режиме работы силового агрегата.

Виды инжекторов

Но отметим, что это общая конструкция системы подачи бензинового мотора. Но инжекторов разработано несколько, и каждая из них обладает своими конструктивными и рабочими особенностями.

На автомобилях применяются системы впрыска двигателя:

  • центрального;
  • распределенного;
  • непосредственного.

Центральный впрыск считается первым инжектором. Его особенность заключается в использовании только одной форсунки, которая впрыскивала бензин во впускной коллектор одновременно для всех цилиндров. Изначально он был механическим и никакой электроники в конструкции не использовалось. Если рассмотреть устройство механического инжектора, то она схожа с карбюраторной системой, с единственной разницей, что вместо карбюратора использовалась форсунка с механическим приводом. Со временем центральную подачу сделали электронной.

Сейчас этот тип не используется из-за ряда недостатков, основной из которых — неравномерность распределения топлива по цилиндрам.

Распределенный впрыск на данный момент является самой распространенной системой. Конструкция этого типа инжектора расписана выше. Ее особенность заключается в том, что топливо для каждого цилиндра подает своя форсунка.

В конструкции этого вида форсунки устанавливаются во впускном коллекторе и располагаются рядом с ГБЦ. Распределение топлива по цилиндрам дает возможность обеспечить точную дозировку бензина.

Непосредственный впрыск сейчас является самым совершенным типом подачи бензина. В предыдущих двух типах бензин подавался в проходящий поток воздуха, и смесеобразование начинало осуществляться еще во впускном коллекторе. Этот же инжектора по конструкции копирует дизельную систему впрыска.

В инжекторе с непосредственной подачей распылители форсунок располагаются в камере сгорания. В результате компоненты топливовоздушной смеси здесь запускаются в цилиндры по отдельности, и уже в самой камере они смешиваются.

Особенность работы этого инжектора заключается в том, что для впрыскивания бензина требуется высокие показатели давления топлива. И его создание обеспечивает еще один узел, добавленный в устройство исполнительной части – насос высокого давления.

Немного истории

Активно устанавливаться такая система питания на автомобилях стала со средины 80-х годов, когда начали вводиться нормы экологичности выбросов. Сама идея инжекторной системы впрыска топлива появилась значительно раньше, еще в 30-х годах. Но тогда основная задача крылась не в экологичном выхлопе, а повышении мощности.

Первые инжекторные системы применялись в боевой авиации. На то время, это была полностью механическая конструкция, которая вполне неплохо выполняла свои функции. С появлением реактивных двигателей, инжекторы практически перестали использоваться в военной авиатехнике. На автомобилях же механический инжектор особо распространения не получил, поскольку он не мог полноценно выполнять возложенные функции. Дело в том, что режимы двигателя автомобиля меняются значительно чаще, чем у самолета, и механическая система не успевала своевременно подстраиваться под работу мотора. В этом плане карбюратор выигрывал.

Но активное развитие электроники дало «вторую жизнь» инжекторной системе. И немаловажную роль в этом сыграла борьба за уменьшение выброса вредных веществ. В поисках замены карбюратору, который уже не соответствовал нормативам экологии, конструкторы вернулись к инжекторной системе впрыска топлива, но кардинально пересмотрели ее работу и конструкцию.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector